Multiple solutions for two classes of quasilinear problems defined on a nonreflexive Orlicz–Sobolev space

نویسندگان

چکیده

In this paper, we prove the existence and multiplicity of solutions for a large class quasilinear problems on nonreflexive Orlicz-Sobolev space. Here, use variational methods developed by Szulkin combined with some properties weak$^*$ topology.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of multiple solutions for Sturm-Liouville boundary value problems

In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.

متن کامل

On convergence of solutions to equilibria for quasilinear parabolic problems

Article history: Received 9 July 2008 Revised 23 October 2008 Available online 9 December 2008 MSC: 34G20 35K55 35B35 37D10 35R35

متن کامل

Lifting solutions of quasilinear convection-dominated problems

The steady state of the quasilinear convection-diffusion-reaction equation ut −∇(D(u)∇u) + b(u)∇u+ c(u) = 0 (1) is studied. Depending on the ratio between convection and diffusion coefficients, equation (1) ranges from parabolic to almost hyperbolic. From a numerical point of view two main difficulties can arise related with the existence of layers and/or the non smoothness of the coefficients....

متن کامل

Existence of Multiple Solutions for a Quasilinear Biharmonic Equation

Using three critical points theorems, we prove the existence of at least three solutions for a quasilinear biharmonic equation.

متن کامل

Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting

We study the boundary value problem −div(log(1 + |∇u|)|∇u|∇u) = f(u) in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in R with smooth boundary. We distinguish the cases where either f(u) = −λ|u|u+|u|u or f(u) = λ|u|u−|u|u, with p, q > 1 , p+q < min{N, r}, and r < (Np−N+p)/(N−p). In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 2022

ISSN: ['0004-2080', '1871-2487']

DOI: https://doi.org/10.4310/arkiv.2022.v60.n1.a1